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Abstract

The possibility that inflation may trigger an instability in compactification of

extra spatial dimensions is considered. In old, new, or extended inflation, the

false vacuum energy results in a semiclassical instability in which the scalar

field representing the radius of the extra dimensions may tunnel through a

potential barrier leading to an expansion of the internal space. In chaotic

inflation, if the initial value of the scalar field responsible for inflation is large

enough, the internal space becomes cIassically unstable to ever increasing

expansion. Restrictions on inflationary models necessary to keep the extra

dimensions small are discussed.

(NASA-CR-I_6597) STABILITY Og
COMPACTIEICATISN DURING INFLATION

(esservatorio Astronomico) Z2 p

Ng0-zZS02

C_CL 03"
Unclas

G3190 02793a7

v__erm_edbyUn_ver__tiesResearchAss___ati_n_n__under__ntractwiththeUnited__a_esDepar_ment__Energy





I. INTRODUCTION

If the fundamental theory of nature is a "higher-dimensional" one with extra spatial

dimensions, it is necessary to hide the extra dimensions. The usual mechanism for hiding

the extra dimensions is to assume that they form a compact internal space with a physical

size small enough to have escaped detection. For currently available accelerator energies,

this requires a size smaller than the Fermi length, or about 10-1%m. This would not be

surprising, since in almost all extra-dimensional theories the fundamental length scale is

__1/2set by the Planck length, Ipl = '-'N = 1.616 x 10-3Scm. In the limit that the physical size

of the internal space is smaller than the physical size of the external space, it is possible

to dimensionally reduce the system (integrate over the extra dimensions) and obtain an

"effective" (3 + 1)-dimensional theory.

The assumption that the extra dimensions form a compact space is quite reasonable

since if the Universe is closed (f_ > 1), the three observed spatial dimensions form a

compact space (a 3-sphere, SS). The remarkable thing is that there is such a disparity

in the sizes--10-SScm for the internal space and more than 102Scm for the external

space. Theories with extra spatial dimensions are many and varied. However all have

common features of relevance for cosmology. In theories with extra dimensions the truly

fundamental constants are the ones in the higher-dimensional theory. The constants that

appear in the effective four-dimensional theory are the result of integration over the extra

dimensions. If the volume of the extra dimensions would change, so would the "observed"

constants. This implies that the internal dimensions must be static, or have changed very

little since the time of primordial nucleosynthesis. 1

The curious cosmology that emerges is one that has some dimensions large and ex-

panding, and some dimensions small and static. Since expansion (or contraction) is'the

generic behavior expected, the challenge for cosmologists involves constructing models
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that have static extra dimensions. The basic approach is to assume that the higher

dimensional theory is that of gravity plus a cosmological constant. 2 The extra dimen-

sions are held static due to the interplay between the cosmological constant and either

classical 3 or quantum 4 fields. Although the true mechanism in more complicated theories

such as superstfing models might be more complex, there must be some vacuum stress

keeping the extra dimensions static and the toy models studied here may very well be

relevant.

In the models that have been studied, the present ground state is stable against small

fluctuations of the size of the internal space. Maeda 5 claimed that it is also stable against

tunnelling under the potential barrier. In Section II we show that when other fields are

introduced, the potential is changed in such a way that a semiclassical instability appears

and there is a non-zero probability for the extra dimensions to tunnel out the potential

keeping them small. On the other hand, the presence of scalar fields is required during

the inflationary era so that their effect on the dynamics of a multidimensional Universe

must be considered. In Section III we discuss the stability of internal space when old, new

or extended inflation is considered. In this case the problem has a semiclassical nature:

a calculation of transition rates is then performed. In Section IV the analysis is extended

to Linde's model of chaotic inflation. Our results are summarized in a concluding section.

II. FROM N TO 4 DIMENSIONS

We will start with a theory of gravity in N = D + 4 dimensions with a cosmological

constant ._ and some matter fields, for simplicity represented as a single scalar field 5.

Upon dimensional reduction, the scalar field _ will give rise to a 4-dimensional scalar field

responsible for inflation (called the inflaton), and the degree of freedom corresponding



to dilatations of the internal spacewill give rise to a second4-dimensionalscalar field

known asthe dilaton. The action is s

f [ 1 R+2_.+£_(¢)+...] (1)S = dnz V/Z-_ 167rG

where G is the gravitational constant in D + 4 dimensions, related to Newton's constant

G,v by G = GzvTv_ with $_ the present volume of the internal space. The field ¢ is

assumed to appear as a minimally coupled scalar field:

= - (2)

Extra dimensions are assumed to be compactified to a D-sphere of radius b, whose present

value is b0. The metric then reads:

gMlv = diag [0u_(x) ; ba(z)h,i(y)]. (3)

After dimensional reduction, fields do not depend on the coordinates of the internal space

(hii is just the metric of a D-sphere of unit radius), so that an integration over these

coordinates yields only a numerical factor. Introducing the Newton constant GN, the

action (1) becomes:

+ +V_ [_(4)-2A+"'] , (4)

where dots stand for other fields needed to obtain compactification. The ordinary

Einstein-Hilbert action may be recovered after a conformal transformation of the 4-

dimensional metric:

_,,,, = exp(-Do'/tyo) g,,_,, "(5)

with the dilaton field defined by
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b) [D(D_+2)]1/2¢r = ¢r01n bo ' ¢r0 =[ 16_'GN J ;

it has the ordinary field dimensions of (length) -1.

corresponding to b = bo, and & = 0. This corresponds to a static internal space.

final 4-dimensional action is

The desired final state is ¢r = 0,

The

where Ux(tr) and V(_,) are specified below. In this last expression for the action, the

metric tensor g,,., and not _, appears; furthermore we introduced the field _ = (V °)_/2_

with canonical dimension (length) -_ [in the D + 4-dimensional theory _ has dimensions

(length)-l-D/2]. In this conformal frame, the gravitational constant (the coefficient of

the Ricci scalar) is constant, but the mass scale associated with the inflaton is not, due

to the factor exp(-Dcr/tr0) in front of V(_).

The potential Ua(_r) of Eq.(7) contains contribution from (at least) three sources.

The first source is the term in Eq.(4) proportional to A. The second source is due to

the curvature of the internal space, which appears in Eq.(4) as the term proportional to

bD-u. Finally there must be some other source to give a stable ground state. We will

consider a general model that encompasses two compactification schemes, which we shall

refer to as either Casimir, where an extra potential is given by the quantization of scalar

fields in a compact space, s,4 or monopole, where an extra vector field is considered for

which the well known Freund-Rubin ansatz is taken. 7 Both cases are discussed in details

in Ref. (8). The point is that the extra contribution is some (negative and D-dependent)

power of the radius of the internal space; thus the curvature term can be balanced and

a static solution b = bo (i.e., _r = 0) is allowed. Furthermore, this solution has non-zero

energy, so that the N-dimensional constant _. in the action (1) is tuned to ensure that

(6)

f
1 u1 R + _O.o-O o-- U'_(o')S = jd_v#Z-9 16rcG N

1 I_l.,t

+_g Ou'g'O,N-' exp(-Dtr/Cro)V(_,)]



an effective4-dimensionalcosmologicalconstant doesnot appear. The potential Ul(o'),

shown in Fig. (1) for the Casimir case has the following expression:

Ul(a) = a [--D 2+ 2 e-2(D+2)_/_° + e-n"l_° DD+_e-(n+2)"/_°l+- , (8)

where a = (D - 1)o'g/b_(D + 4); in the monopole case it looks like very similar and has

the same dynamical properties. When ¢ is constant and has zero energy, the dilaton field

is trapped at the minimum of this potential and is stable from the semiclassical point of

view. On the other hand we must introduce a ¢ field in order to have inflation. Thus,

the evolution of o" will be governed by a potential of the general form:

where V(¢) will be specified below for two different cases. In any inflationary scenario

with phase transitions, ¢ is initially in a false vacuum state. The potential is of the form:

Here A is the dimensionless ratio of the multidimensional constant _ [dimension (length) D]

to the volume of the internal space V_. The potential Y(¢), shown in Fig. (2), has a

true-vacuum at II' = er = ¢013(1 + e) + V/1 ÷ 9e(2 ÷ e)l/4 , and a false-vacuum state at

¢ = 0. The constant A in Eq.(10) is now specified to be

A = -,_ L_¢T(¢T ¢o)2 (11}

in orderto ensure that V(¢T) = 0. It willserveas the effective4-dimensionalcosmological

constant to drive the de Sitter phase during inflation when ¢ # CT. For ¢ = 0, the

potential has the simpleform U(,,',0) = Ul(0r)+ AexP(-Do'/O'o). The effectof the new

term is to raise the energy of the minimum of the potential to a positive value, while

leaving invariantthe asymptoticbehaviourfor large or. SinceU(_ = 0,0) > V(or=

c¢, 0) = 0, the compactifiedvacuum is semiclassicallyunstable so long as ¢ # Cr. There
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are two true ground states of the system. The first ground state is _b = _bT and o" = 0.

This is the desired ground state corresponding to a compactified internal space. The

other ground state is _r = o¢, for any _,. This is the state to be avoided, corresponding to

an expanding intcrnal space. In the second case, the scalar field representing the radius

of the extra dimensions tunnels through the barrier, and lowers the energy of the system

by ever increasing expansion.

Compactification is not stable unless the inflationary stage ends before the internal

space can grow. For this to occur, the inflaton must tunnel through the potential faster

than the dilaton can tunnel through its own. The 4-dimensional appearance of the world

is the result of a competition between the two scalar fields won by the inflaton. In the next

section, we calculate the tunnelling rates in ¢ and ¢r directions and show that the first one

is larger than the second for reasonable choices of parameters, so that compactification

of internal space is preserved in new or extended inflation.

We will also discuss stability in the context of Linde's chaotic inflation theory. 1_ In

this case the dynamics is totally classical, but the guidelines of the discussion are similar

to the previous case. Here the introduction of the potential that drives inflation changes

the dynamics of the dilaton field in such a way that for very large values of ¢, the

barrier against evolution away from o" = 0 disappears, leaving the dilaton free to evolve

classically during inflation. The potential assumed for chaotic inflation, Fig. (3), is of

the form

Vc(_b) = lamb4. (12)

The relevant potential for chaotic inflation is Uc(o',_b), which is Eq.(9) with V(_b) =

Vc(_b). Stability of compactification in chaotic inflation is discussed in Section IV.
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III. SENIICLASSICAL STABILITY

Let us turn now to the evaluation of tunnelling rates in the two relevant alternative

directions: toward an inner-space explosion, or toward the compactified vacuum. Only

when the latter results to be much more likely than the former, will the process match

the actual observations of an inflated, 4-dimensional Universe. The theory of vacuum

decay in flat space is well known, 9 and in the thin-wall approximation gives a very simple

result: the probability of transition per unit time per unit volume of a field _b in a

potential V(¢_) is F/V = Aexp(-SE), where SE is the Euclidean action for & evaluated

along the "bounce" path of the field. The thin-wall approximation is realized when the

ratio of the energy difference e between the two vacuum states and the barrier height is

much smaller than one. In this case SE is simply 9

SE -- 27_2S_ ' (13)

where $1 = f_ d_[2V(_)] _/2, and _ = a,b are the two vacuum states.

In our case we have two fields, the dilaton _ (representing the inner-space dynamical

variable) and the inflaton _, and, in general, several vacuum states. Assuming for

the potential Eq.(10), as required for the phase transitions occurring in the old, new,

and extended inflationary models, 1° we have in fact three vacuum states (one of which

is metastable), as previously shown. It is obvious that the tunnelling can occur along

any path linking the vacuum states, but in Eq.(13) we need taking into account only the

least-action path. In the same thin-wall approximation we can see that the only possible

directions of tunnelling are from _ = 0 to _ = _T along _ = 0 with bounce action S(_)

(the desired tunnelling) or from o" = 0 to o" = c¢ along _ = 0 with bounce action SE(O')

(the one to be avoided). We may then state that the inflaton tunnelling overrides'the

dilaton tunnelling if



s_(_) >>s_(¢). (14)

Let us finally start with the calculations. The complete potential for the two fields is

Eq.(9) with Y(¢) as in Eq.(10) [Fig. (4)]. For a small e, the origin _r = 0,¢ = 0 is a

(metastable) vacuum state, with U(0,0) = A. Let us call this vacuum state V0. The

other (true) vacuum states lie at (o" = 0, t/, = eT), and (for any ¢) at _r = +ao (to be

called V1 and Va, respectively). The Euclidean Action for the tunnelling V0 --+ VI is a

well-known result, and in the thin-wall limit (small e) it amounts to n

7r 2

s_(¢) = :_s_3" (15)

The Euclidean Action in the o" direction can be evaluated in the thin-wall approximation

if A << UM, where U M is the maximum of U(_,¢ = 0). To first order in 1/D, i.e., when

we may neglect the first term in Eq.(9), it is easy to see that the maximum is attained

at YM = (1 -- 2/D), with UM = 2a/(De2). Then the thin-wall condition is equivalent to

A/a << 2/(D e_) and is fulfilled for

2 4 2
D >> 4rre e._TPoGNb o. (16)

We will comment later on this inequality.

The calculation of SS(a) involves the integral

sl = d_[2U(_,¢ = 0)]1/', (lr)

that can be recast in the form (neglecting A/a)

= @ + y_ (is)
[/?+2" D+ '

where we have defined y = exp(-o/o'0), agNn, to first order in 1/D, we have $1 =

_roFv/--d/D , where F is a geometric dimensionless factor of order unity, with a very mild

dependence on D. When D = 6, for example, a numerical integration gives F = 0.966,

while for D = 20 we get F = 0.57. Eq.(13) now reads



_'2F4 D ) 4

The parameter A can be expanded in a power series in e, and at lowest order is A =

eAg,_/2. Putting everything together, the inequality of Eq.(14) gives

(20)
GNbo >> j3 , _= 3F'

where we introduced the ¢ mass, m_ = A¢02/2. The constants appearing in Eq.(20)

are all free parameters of the theory (except of course GN), but they are in principle

observable quantities.

Notice that although we assumed that ¢ =const = 0, we do not expect the calculation

to be changed much if ¢ is slowly rolling as in new inflation. In particular, a successful new

inflation, i.e., one which does not violate the constraint on the production of primordial

fluctuations, either in the form of gravitational waves or scalar perturbations, must have

very small me and X. For example, in Planck units, it is often assumed m,_ -,- 10 -e

and A --- 10 -12. The natural, yet unknown, value for b0 is the Planck length, so that

Eq.(20) is expected to be satisfied even for D = 1. Moreover, one can see that Eq.(16) is

consistent with Eq.(20) when the same values as above are assumed, rendering inflation

a good mechanism for having dimensional stability, at least in the thin-wall limit.



IV. CLASSICAL STABILITY

In Linde's chaotic inflation, 12 the field ¢ need not have a potential of the form Eq.(10).

Indeed, it is possible to have inflation for any ¢ field evolving classically to zero starting

from an initial value of a few Planck units (at least three Planck masses for producing

70 e-folds of inflation). From the modified potential for the dilaton field a in Eq.(9)

[coupled now with Eq.(12)--see Fig. (5)], one sees that, for large ¢, the potential barrier

that makes a = 0 a stable solution could disappear.

total potential assumes the following form

_" 2 v2(D+2 ) [1+ + w(¢)]vD

Including e-dependent term, the

D + 2 yD+2 ' (21)

with W(¢) = _¢4/4a. It is not difficult to show that Uc has either two local extrema [a

minimum and a maximum, as in Fig. (1)] or no local extrema at all, depending on the

value of W(¢). This can be seen most easily by splitting the derivative U' = OUv/cgy

into two functions of y, U_(y) = ayD-l[f_(y)- f_(y)], where fl = 4y D+4 and f2 =

(D + 4)y 2 - O(1 + W). It is clear that f2(y) crosses fl(y) at most two times (for y :> 0),

and that there must exist some Wo, and hence some ¢., for which f_ is tangent to ]'1. The

value ¢ = ¢. signals that the barrier has vanished, and that starting from ¢ above this

critical value the classical evolution will be toward o" = +oo (which we want to avoid).

The critical value ¢. can be determined exactly by solving the system in y and ¢

f; = Y_, fl = f2. (22)

From the first equation we learn that the barrier disappears when y = y. = 2-1/(D+_),

and from the second one that this happens when W(¢) has the value

(23)

Then, we may state that the condition for the existence of a barrier between the com-

pactified Universe (tr = 0) and the unfolded one (a = +c_) is, for large D,
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1 4 DV(¢) = A_b4 < _A¢o - . (24)- 8zcGNb_

The last term in Eq.(24) is of order unity in Planck units if b0 is close to the Planck length.

In this case, the condition Eq.(24) is similar to the "quantum-boundary" constraint

V(¢) < M_,t, and both inequalities may be satisfied assuming a very weakly coupled

inflaton, as usually done in current inflationary scenarios.

Equation (24) has another, very interesting, implication. In Linde's chaotic inflation

the initial value ¢_ of the field and its self-coupling constant ,_ are given a lower bound

from the requirement of sufficient inflation (¢, > 3Mpt), and of enough initial seed

fluctuations to drive the subsequent large-scale structure formation 12,13 (A :> 10-1_). In

this case, Eq.(24) implies that

D
b] _< ._ D x 101° l_,l, (25)

where Ipl is the Planck length. If one considers that the experimental upper bound on bo is

not better than b0 < 1017 lpt, the purely theoretical speculations lead to an improvement

of more than ten orders of magnitude. Notice that most theoretical bounds on the inner

dimensions deal only with the rate of change of the inner radius, i.e., with bib or with

some compactification ratio b/bo (see, for example, upper bounds from nucleosynthesis 1

or microwave background anisotropy14). Here, in contrast, the very existence of a point

(a.,¢.) at which the barrier disappears allows a direct upper bound on the absolute

value of the present inner radius b0. A similar constraint can be derived from Eq.(20),

but there it rests on the hypothesis of thin-wall bubbles, and it is a less stringent bound.

Let us conclude this section observing that the shrinking of the barrier is a quite

general feature, provided the self-coupling potential for ¢ is monotonically growing, and

that the shape of V(_r, ¢ = 0) for _r is as in Fig. (1).
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V. CONCLUSIONS

In multidimensional theories, there exists an internal space of radius b0 that is assumed

to be very small and static. This configuration is made stable--both classically and

semictassically--by an appropriate potential. However, in any inflationary scenario this

potential is modified so that an instability appears. Is, then, multidimensional cosmology

incompatible with inflation?

We took in consideration old, new and extended inflation on one hand and chaotic

inflation on the other. In the first case the problem turns out to be of a semiclassical

nature: stability is preserved if the probability for the dilaton to tunnel through its po-

tential is smaller than that for the inflaton to do the same under its own. A calculation of

the transition rates in the thin-wall limit shows that this is actually the case; reasonable

choices of the mass of the inflaton and of its self-coupling constant do not give rise to

instability for any number of internal dimensions. In chaotic inflation, the problem is

totally classical; for very large values of the inflaton field ¢, the potential barrier disap-

pears and the internal space can grow without limit. Nevertheless, the initial conditions

and the parameters of the model adjust themselves naturally in such a way as to allow

for a successful inflation, and at the same time to meet the conditions for the barrier

to exist. For both cases, the result is then that the internal space remains stable during

inflation.

Extensions of Linde's modeP s predict that there are regions of the Universe in an eter-

nal inflationary stage. This happens when, in one of the causally disconnected "miniuni-

verses," the scalar field ¢ is initially greater than _-x/s Mpl. In this case ¢ grows larger

and larger climbing th_ potential in Fig. (3) rather than rolling down to zero. However,

the maximum value that ¢ can reach is eQe = _-1/4 MpL at which its growth beco'mes

suppressed, x5 In our multidimensional environment, this could imply that eventually
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becomeslarger than _b. where the compactification breaks. Now, we see from Eq.(24)

that _b, m (D/b_)_/4_bQs; then, depending on the values of b0 and D, _b. lies either in the

classical or in the quantum region. In the latter case _b never reaches _b, where the barrier

disappears, and we may conclude that in eternally inflating domains internal dimensions

cannot be unfolded; in the former case, on the contrary, unfolding takes place, with the

consequence that most part of the physical volume of the Universe lives in a multidimen-

sional state. Of course one must have in mind that these considerations hold true only

for compactification schemes of the kind we discussed in Section II, and that chaoticity

allows in principle all kinds of dimensional dynamics in different miniuniverses.

One last result is worth of mention. The knowledge of the physical point in the (tr, _b)

plane at which the barrier disappears, allows a direct bound on the present radius of the

internal space bg < D x 10 x° l_,t, while, usually, only limits on the value of the ratio b/bo

are given.
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FIGURE CAPTIONS

Fig. 1: Casimir potential Ul(o'). The points with tr = 0 correspond to a stable

compactification of the internal space when the vacuum energy vanishes.

Fig. 2: Inflationary potential with phase transition. Notice the ground state at _ =

_JT.

Fig. 3: Quartic potential for chaotic model. Inflation occurs when _, rolls down to

zero.

Fig. 4: Total potential of Eq.(9) in old, new or extended inflation. The Universe may

tunnel from the origin toward two ground states. The most likely event is the one in

which the internal space remains compactified.

Fig. 5: Potential of Eq.(9) in chaotic inflation. The barrier against evolution in the

tr direction is seen to disappear for large _.
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